

2

OBJECTIVES

- At the end of the webinar, participants should be able to: 1. Recognize the food safety and quality risks associated with
- improper cooling of foods.
- 2. Implement effective cooling strategies for selected food items.
- 3. Identify resources to use in developing standard operating procedures addressing cooling practices.

CDC FIVE RISK FACTORS Improper temperature control Inadequate cooking Cross contamination Poor employee health and hygiene Food from unsafe sources

Ack of temperature control Improper cold holding Improper hot holding due to equipment malfunction Improper hot holding due to procedure Improper adherence to approved plan to use time as a public health control. Improper or slow cooling Improper reheating

IMPORTANCE OF PROPER COOLING
 Improper cooling is considered a proliferation risk factor by CDC.
 Consider a control to prevent germination of spores.

 FDA has consistently identified time/temperature control as a critical control point for preventing foodborne illness.

foodborne illness. • Cooling food is an important part of the food

preparation process in some foodservice operations. • Accurate forecasting

Cook to order

9

PATHOGENS: COOLING AS A CONTROL MEASURE

- Bacillus cereus Meat, poultry, starchy foods (rice, potatoes), puddings, soups, cooked vegetables
- Clostridium botulinum Vacuum-packed foods, reduced oxygen packaged foods, under-processed canned foods, garlic-in oil mixtures, time/temperature abused baked potatoes/sautéed onions
- Clostridium perfringens Cooked meat and poultry, cooked meat and poultry products including casseroles, gravies
- Staphylococcus aureus RTE TCS foods touched by bare hands after cooking and further time/temperature abuse

10

8

Poll Question

• Which is the proper cooling procedure?

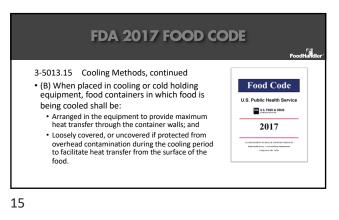
- a) Hot, temperature controlled for safety foods be lowered from a temperature above 135°F to below 70°F in three hours, and then reach below 41°F within a combined total of six hours.
- b) Hot, temperature controlled for safety foods be lowered from a temperature above 135°F to below 41°F within four hours.
- c) Hot, temperature above 135°F to below 41°F within four hours.
 c) Hot, temperature controlled for safety foods be lowered from a temperature above 135°F to below 70°F in two hours, and then reach below 41°F within a combined total of six hours.
- d) Hot, temperature controlled for safety foods be lowered from a temperature above 135°F to below 41°F within six hours.

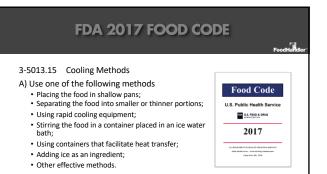
FDA 2017 FOOD CODE

 FDA defines cooling as a critical control point in preventing foodborne outbreaks.

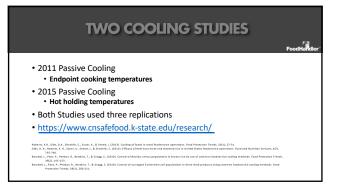
• 3-501.14 Cooling

- Cooked potentially hazardous food (time/temperature control for safety food) shall be cooled within 2 hours from 135°F to 70°F; AND
- Within a total of 6 hours from 135°F to 41°F or less.
- Time/temperature control for safety food shall be cooled 4 hours to 5°C (41°F) or less if prepared from ingredients at ambient temperature, such as canned tuna.

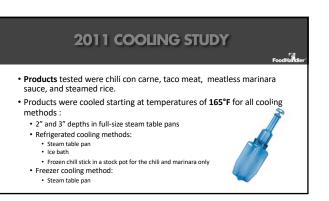

FACTORS THAT CAN AFFECT THE COOLING PROCESS


- Size of the food
- Density of the food
- Type of container used for cooling the food

• Size/volume capacity of the container

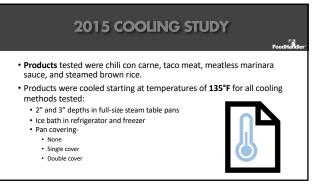


13



14

16



MET FOOD CODE REQUIREMENT AT 165°F

Treatments	Rice	Chili	Taco Meat	Marinara
Chill Stick in Stock Pot				
2-in, ice bath, refrigerator	\checkmark			
3-in, Ice bath, refrigerator				
2-in, Refrigerator				
3-in, Refrigerator				
2-in, Freezer		\checkmark	\checkmark	\checkmark
3-in, Freezer				

19

20

MET FOOD CODE REQUIREMENT AT 135°F

	FoodHaïidler				
Treatments	Rice	Chili	Taco Meat	Marinara	
2-in, Freezer, Covered	\checkmark				
3-in, Freezer, Covered					
2-in, Ice Bath, Refrigerator, Uncovered	\checkmark	\checkmark			
3-in, Ice Bath, Refrigerator, Uncovered	\checkmark	\checkmark	\checkmark		
2-in, Freezer, Uncovered	\checkmark	\checkmark	\checkmark		
3-in, Freezer, Uncovered					
2-in, Ice Bath, Refrigerator, Covered				∧ ∎₩	
3-in, Ice Bath, Refrigerator, Covered				۳. ۵	

21

135°F VALIDATION reouthatter • The action of checking or proving the validity of something. at Marinara • The action of checking or proving the validity of something. • Steps for validation 1. Process Design: Based on the operation

Process Verification: Test
 Continued Process Verification: Use of logs

19

22

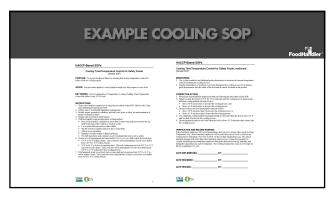
Poll Question

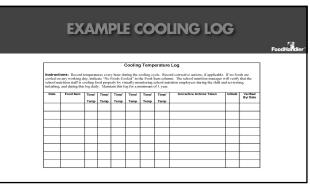
- Which of the following approaches to testing the cooling of hot TCS foods has been used in your operation?
- Tested the cooling process multiple times to ensure it met the cooling benchmarks.
- Adopted the process recommended by our inspector without testing the cooling curves.
- Adopted the process recommended by the parent company or other operations in our company.
- We did not test the cooling process for our operation.

► Test cooling method multiple times. ■ Keep records. ■ Review and adjust as necessary. ■ In the instance that you find your process did not work, try again and take corrective action as specified in your SOP.

<text><list-item><section-header> • Calibrate your equipment. • Secure the probe in place. • Be creative and adapt.

26


Poll Question

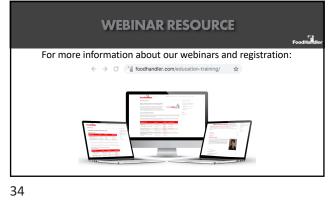

A pork roast is cooked in the oven for pulled pork sandwiches; it is left on the counter overnight. What actions should the employee who finds the pork roast the next morning take?

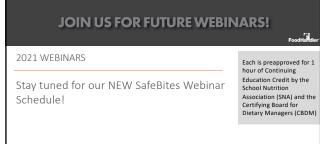
- a) Reheat the pork roast to 165°F and rapidly cool the pork.
- b) Place the pork roast in the cooler until later use.
- c) Discard the pork roast.

27

RESOURCES

- Food and Drug Administration: Food Code <u>https://www.fda.gov/food/fda-food-code/food-code-2017</u>
- Iowa State University Extension and Outreach Food Safety Web Site: <u>https://www.extension.iastate.edu/foodsafety/HACCP</u>
- The Center for Food Safety in Child Nutrition Programs: <u>https://cnsafefood.k-state.edu/research/</u>
- The ICN: Validating and monitoring the cooling process
- https://theicn.org/icn-resources-a-z/cooling-food-safely/
- The ICN: Standard Operating procedures: <u>https://theicn.org/icn-</u>resources-a-z/standard-operating-procedures/


31



32

<u>7</u>

37

<section-header><text><text><section-header>

38

